Bài 4: Giá trị tuyệt đối của một số hữu tỉ. Cộng, trừ, nhân, chia số thập phân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thi Hữu Nguyễn

1) Tìm x \(\in\) Q

a) \(2x+\dfrac{5}{2}=\dfrac{7}{2}\)

b) \(\left|5-\dfrac{1}{2}x\right|=\left|\dfrac{-1}{5}\right|\)

2) Tìm x, y, z, biết

\(\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2=0\)

Nguyễn Huy Tú
25 tháng 6 2017 lúc 20:36

Bài 2:

\(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2\ge0\\\left(y+\dfrac{1}{2}\right)^2\ge0\\\left(z-\dfrac{1}{3}\right)^2\ge0\end{matrix}\right.\Rightarrow\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2\ge0\)\(\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2=0\\\left(y+\dfrac{1}{2}\right)^2=0\\\left(z-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{-1}{2}\\z=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{4},y=\dfrac{-1}{2},z=\dfrac{1}{3}\)

qwerty
25 tháng 6 2017 lúc 20:37

1)

a) \(2x+\dfrac{5}{2}=\dfrac{7}{2}\)

\(\Leftrightarrow2x=\dfrac{7}{2}-\dfrac{5}{2}\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

b) \(\left|5-\dfrac{1}{2}x\right|=\left|-\dfrac{1}{5}\right|\)

\(\Leftrightarrow\left|5-\dfrac{1}{2}x\right|=\dfrac{1}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}5-\dfrac{1}{2}x=\dfrac{1}{5}\\5-\dfrac{1}{2}x=-\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{48}{5}\\x=\dfrac{52}{5}\end{matrix}\right.\)

Vậy \(x_1=\dfrac{48}{5};x_2=\dfrac{52}{5}\)

Aki Tsuki
25 tháng 6 2017 lúc 20:39

a/ \(2x+\dfrac{5}{2}=\dfrac{7}{2}\)

\(\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)

b/ \(\left|5-\dfrac{1}{2}x\right|=\left|-\dfrac{1}{5}\right|\)

\(\Rightarrow\left|5-\dfrac{1}{2}x\right|=\dfrac{1}{5}\)

\(\Rightarrow\left[{}\begin{matrix}5-\dfrac{1}{2}x=\dfrac{1}{5}\\5-\dfrac{1}{2}x=\dfrac{1}{5}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{12}{5}\\x=\dfrac{13}{5}\end{matrix}\right.\)

Bài 2:

\(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2\ge0\forall x\\\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\\\left(x-\dfrac{1}{3}\right)^2\ge0\forall z\end{matrix}\right.\)

=> Để bt = 0 thì\(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2=0\\\left(y+\dfrac{1}{2}\right)^2=0\\\left(z-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x-\dfrac{1}{2}=0\\y+\dfrac{1}{2}=0\\z-\dfrac{1}{3}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy.....................

Mysterious Person
25 tháng 6 2017 lúc 21:02

1) a) \(2x+\dfrac{5}{2}=\dfrac{7}{2}\) \(\Leftrightarrow\) \(2x=\dfrac{7}{2}-\dfrac{5}{2}\) \(\Leftrightarrow\) \(2x=1\) \(\Leftrightarrow\) \(x=\dfrac{1}{2}\)

b) \(\left|5-\dfrac{1}{2}x\right|=\left|\dfrac{-1}{5}\right|\) \(\Leftrightarrow\) \(\left(\left|5-\dfrac{1}{2}x\right|\right)^2=\left(\left|\dfrac{-1}{5}\right|\right)^2\)

\(\Leftrightarrow\) \(\left(5-\dfrac{1}{2}x\right)^2=\dfrac{1}{25}\) \(\Leftrightarrow\) \(5-\dfrac{1}{2}x=\pm\dfrac{1}{5}\)

th1 : \(5-\dfrac{1}{2}x=\dfrac{1}{5}\) \(\Leftrightarrow\) \(-\dfrac{1}{2}x=\dfrac{1}{5}-5=-\dfrac{24}{5}\)

\(\Leftrightarrow\) \(x=-\dfrac{24}{5}:-\dfrac{1}{2}=\dfrac{48}{5}\)

th2 : \(5-\dfrac{1}{2}x=-\dfrac{1}{5}\) \(\Leftrightarrow\) \(-\dfrac{1}{2}x=-\dfrac{1}{5}-5=-\dfrac{26}{5}\)

\(x=-\dfrac{26}{5}:-\dfrac{1}{2}=\dfrac{52}{5}\)

vậy \(x=\dfrac{48}{5};x=\dfrac{52}{5}\)

2) ta có : \(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2\ge0\\\left(y+\dfrac{1}{2}\right)^2\ge0\\\left(z-\dfrac{1}{3}\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\) \(\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2\ge0\)

vậy \(\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2=0\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2=0\\\left(y+\dfrac{1}{2}\right)^2=0\\\left(z-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x-\dfrac{1}{2}=0\\y+\dfrac{1}{2}=0\\z-\dfrac{1}{3}=0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=-\dfrac{1}{2}\\z=\dfrac{1}{3}\end{matrix}\right.\)

vậy \(x=\dfrac{1}{4};y=-\dfrac{1}{2};z=\dfrac{1}{3}\)


Các câu hỏi tương tự
PhươngAnh Lê
Xem chi tiết
PhươngAnh Lê
Xem chi tiết
Hà Thanh Tùng
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Minh Hiền Tạ Phạm
Xem chi tiết
PhươngAnh Lê
Xem chi tiết
Lê Thị Hồng Vân
Xem chi tiết
Nguyễn Phúc Nguyên
Xem chi tiết
Quynh Truong
Xem chi tiết