a) Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :
\(\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\)
\(\ge\left|x+2+1-x\right|=3\) (1)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+2\right)\left(1-x\right)\ge0\)
\(\Leftrightarrow-2\le x\le1\)
+ \(\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow3-\left(y+2\right)^2\le3\) (2)
Dấu "=" xảy ra \(\Leftrightarrow\left(y+2\right)^2=0\Leftrightarrow y=-2\)
Từ (1) và (2) suy ra \(\left|x+2\right|+\left|x+1\right|=3-\left(y+2\right)^2=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le1\\y=-2\end{matrix}\right.\)
b) \(\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\) (3)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-5\right)\left(1-x\right)\ge0\)
\(\Leftrightarrow1\le x\le5\)
+ \(\left|y+1\right|\ge0\forall y\) \(\Rightarrow\left|y+1\right|+3\ge3\)
\(\Rightarrow\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\) (4)
Dấu "=" xảy ra \(\Leftrightarrow\left|y+1\right|=0\Leftrightarrow y=-1\)
Từ (3) và (4) suy ra \(\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}1\le x\le5\\y=-1\end{matrix}\right.\)
Câu c,d lm tương tự