Luyện tập Giá trị biểu thức P=-2x^2y\left(xy+y^2\right) P=−2x 2 y(xy+y 2 ) tại x=-1;y=2 x=−1;y=2 là 6. -6 −6 . -8 −8 .8.
Làm tính nhân :
a) \(3x\left(5x^2-2x-1\right)\)
b) \(\left(x^2+2xy-3\right)\left(-xy\right)\)
c) \(\dfrac{1}{2}x^2y\left(2x^3-\dfrac{2}{5}xy^2-1\right)\)
Rút gọn biểu thức:
A=\(2x\left(x-2\right)-x\left(2x-3\right)\)
B=\(\left(x-1\right)\left(2x+1\right)-\left(x^2-2x-1\right)\)
C=\(\left(x+y\right)\left(x^2-xy+y^2\right)-x^3\)
D=\(\left(12x-3\right)\left(x+4\right)-x\left(2x+7\right)\)
E=\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
a, -2 x^3y(2x^2-3y+5yz)
b, (x-2y)(x^2y^2-xy+2y)
c, 2/5xy(x^2.y-5x+10y)
d, 2/3x^2y.(3xy-x^2+y)
e, (x-y)(x^2+xy+y^2)
f, (1/2xy-1).(x^3-2x-6)
Tính giá trị biểu thức
B= x.(\(x^2\)+ xy+ \(y^2\)) - y.(\(x^2\) +xy+ \(y^2\)) với x = 10, y = -1
C= \(x^4+10x^3+10x^2+10\) với x = -9
D= \(x^2.\left(x+y\right)-xy.\left(x-y\right)-x.\left(y^2+1\right)\) với x = -1, y= 2006
Cho \(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\) và xy>0
Tìm GTLN của \(M=\dfrac{1}{x}+\dfrac{1}{y}\)
Làm tính nhân :
a) \(x^2\left(5x^3-x-\dfrac{1}{2}\right)\)
b) \(\left(3xy-x^2+y\right)\dfrac{2}{3}x^2y\)
c) \(\left(4x^3-5xy+2x\right)\left(-\dfrac{1}{2}xy\right)\)
Rút gọn và tính giá trị. 2xy(x^2y-1/2xy)-2x^2y(xy-1/2y)+1 với x = -2 ; y= 1/2
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến x:
A=\(x^4-\left(x^2-1\right)\left(x^2+1\right)\)
B=\(x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
C=\(x^3+y^3+4-\left(x^2+xy+y^2\right)\left(x-y\right)\)