Bài 1: Nhân đơn thức với đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bảo Khánh

d, \(2xy^2+x^2y^4+7\)
\(=2xy^2+x^2y^4+1-1+7\)
\(=\left(xy^2+1\right)^2+6\)
Vì \(\left(xy^2+1\right)^2\)≥0 nên \(\left(xy^2+1\right)^2+6\) ≥ 6
Dấu "=" xảy ra ⇔ \(xy^2+1=0\)
                        ⇔ \(xy^2=-1\)
Vậy GTNN của đa thức là 6 tại \(xy^2\)= -1

Edogawa Conan
12 tháng 8 2021 lúc 9:04

đúng

Huy Phạm
12 tháng 8 2021 lúc 9:05

đúng


Các câu hỏi tương tự
XE ÔM KHÔNG EM
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
harumi05
Xem chi tiết
Lan
Xem chi tiết
Thảo Thu
Xem chi tiết
Lê Công Hào
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đinh Đức Minh
Xem chi tiết
harumi05
Xem chi tiết