Ta có: \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\)=5 \(\Rightarrow\) \(\dfrac{x+y}{xy}\)=5 \(\Rightarrow\) x+y = 5xy (1)
\(\dfrac{1}{x}\) - \(\dfrac{1}{y}\) =1 \(\Rightarrow\) \(\dfrac{y-x}{xy}\)=1 \(\Rightarrow\) y-x= xy (2)
Lấy (1)+(2), ta được: x+y+y-x=5xy+xy
\(\Leftrightarrow\) 2y = 6xy
\(\Leftrightarrow\) 2=6x
\(\Leftrightarrow\) x = \(\dfrac{1}{3}\)(3)
Ta có y-x=xy \(\Leftrightarrow\) y- xy=x \(\Leftrightarrow\) y- \(\dfrac{1}{3}\)y = \(\dfrac{1}{3}\)
\(\Leftrightarrow\) \(\dfrac{2}{3}\)y=\(\dfrac{1}{3}\)
\(\Leftrightarrow\) y = \(\dfrac{1}{2}\) (4)
Từ (3),(4) \(\Rightarrow\) x+y = \(\dfrac{1}{3}\)+ \(\dfrac{1}{2}\)=\(\dfrac{5}{6}\)
Vậy x +y = \(\dfrac{5}{6}\)
Đúng thì tick cho mình 1 cái nha