Cho x, y, z dương thỏa mãn \(\left\{{}\begin{matrix}x^2+xy+y^2=1\\y^2+yz+z^2=\dfrac{1}{4}\\x^2+xz+z^2=\dfrac{3}{4}\end{matrix}\right.\)
Tính B=x+y+z
Cho các số x, y, z dương thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3\)
Cmr: \(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2y+z+x\right)^2}+\dfrac{1}{\left(2z+x+y\right)^2}\ge\dfrac{3}{16}\)
cho các số thực dương x,y,x thỏa mãn x+y≤z. CMR: \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge\dfrac{27}{2}\)
a ,Tính \(A=\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
b, Cho a,b,c \(\ne\) 0 thỏa mãn a+b+c=0
CMR: \(M=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=0\)
c, Cho biểu thức :
\(B=\dfrac{y}{\left(x-y\right)\left(y-z\right)}+\dfrac{z}{\left(y-z\right)\left(z-x\right)}+\dfrac{x}{\left(z-x\right)\left(x-y\right)}\)
CMR : Giá trị bth B không phụ thuộc vào giá trị của biến
Bài 1: tính
a,\(\dfrac{1}{x^2-x}+\dfrac{2x}{4x^3}-\dfrac{1}{x^2+x+1}\)
b,\(\dfrac{1}{x^2-x+1}+1-\dfrac{x^2+2}{x^3+1}\)
c,\(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-z\right)\left(y-x\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}\)
Cho x,y,z # 0 và\(\dfrac{x-y-z}{x}=\dfrac{y-x-z}{y}=\dfrac{-x-y+z}{z}\)
Tính A =\(\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{z}{y}\right)\left(1+\dfrac{x}{z}\right)\)
CHO xyz=1. TÍNH \(E=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2+\left(z+\dfrac{1}{z}\right)^2-\left(x+\dfrac{1}{x}\right)\left(x+\dfrac{1}{y}\right)\left(z+\dfrac{1}{z}\right)\)
Cho x, y, z đôi một khác nhau thỏa mãn: \(x^3+y^3+z^3=3xyz\) và \(xyz\ne0\). Tính: \(B=\dfrac{16.\left(x+y\right)}{z}+\dfrac{3.\left(y+z\right)}{x}-\dfrac{2019.\left(x+z\right)}{y}\)
Cho x, y, z thỏa mãn : \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\). Cmr :
\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{zx\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\ge\dfrac{3}{2}\).