Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dia fic

cho các số thực dương x,y,x thỏa mãn x+y≤z. CMR: \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge\dfrac{27}{2}\)

Trần Minh Hoàng
8 tháng 1 2021 lúc 11:02

Đặt \(\dfrac{x}{z}=a;\dfrac{y}{z}=b\).

Theo gt ta có \(a+b\le1\).

BĐT cần chứng minh tương đương:

\(a^2+b^2+\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge \frac{21}{2}\).

Theo bđt AM - GM: \(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge2;a^2+\dfrac{1}{16}a^2\ge\dfrac{1}{2};b^2+\dfrac{1}{16}b^2\ge\dfrac{1}{2};\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\ge\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge\dfrac{15}{32}.\left(\dfrac{4}{a+b}\right)^2\ge\dfrac{15}{2}\).

Cộng vế với vế của các bđt trên lại ta có đpcm.

 


Các câu hỏi tương tự
:vvv
Xem chi tiết
Y
Xem chi tiết
Suzanna Dezaki
Xem chi tiết
pro
Xem chi tiết
Big City Boy
Xem chi tiết
 Mashiro Shiina
Xem chi tiết
Nam Phạm An
Xem chi tiết
dia fic
Xem chi tiết
Thảo Công Túa
Xem chi tiết