Áp dụng BĐT Cauchy-Schwarz:
\(VT^2\le\left(a+b+c\right)\left(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\right)\)
Ta đi chứng minh \(\sum\dfrac{a}{4a+3bc}\le\dfrac{1}{2}\). Qui đồng và chuyển vế ta thu được:
\(abc\left[18\left(a^2+b^2+c^2\right)+27abc-32\right]\ge0\) (*)
Xét \(18\sum a^2+27abc-32=9\left(\sum a^2\right)\left(a+b+c\right)+27abc-4\left(a+b+c\right)^3\)
\(=5\sum a^3+3abc-3\sum ab\left(a+b\right)\)
\(=\sum2\left(a+b\right)\left(a-b\right)^2+\left[a^3+b^3+c^3+3abc-\sum ab\left(a+b\right)\right]\ge0\)
Do \(\sum a^3+3abc\ge\sum ab\left(a+b\right)\) ( BĐT Schur Bậc 3)
Do đó (*) luôn đúng.Dấu = xảy ra tại 2 điểm là a=b=c=2/3 hoặc a=0,b=c=1 cùng các hoán vị tương ứng.