Mình làm 1 cái, cái còn lại b làm tương tự
Ta có:
\(2^2\equiv1mod\left(3\right)\Rightarrow2^{2n}\equiv1mod\left(3\right)\Rightarrow2^{2n+1}\equiv2mod\left(3\right)\)
\(\Rightarrow2^{2n+1}=3t+2\)
Ta lại có:
\(2^3\equiv1mod\left(7\right)\Rightarrow2^{3t}\equiv1mod\left(7\right)\Rightarrow2^{3t+2}\equiv4mod\left(7\right)\)
\(\Rightarrow2^{3t+2}+3\equiv0mod\left(7\right)\)
\(\Rightarrow2^{2^{2n+1}}+3\equiv0mod\left(7\right)\)
Mà ta có:
\(2^{2^{2n+1}}+3>2^{2^{2.0+1}}+3=7\)
Vậy số đó là hợp số.