Ta sẽ chứng minh \(a^3+b^3+c^3-3abc=0\Leftrightarrow a+b+c=0\)
Phân tích thành nhân tử : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Vì a + b + c = 0 nên \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) hay \(a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3+c^3=3abc\)
Đúng 0
Bình luận (0)
Ta có : \(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)+c^3=0\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=-3ab.-c=3abc\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
Đúng 0
Bình luận (0)