+) A=\(x^2-4xy+5y^2+6y-7=\left(x^2-2.x.2y+4y^2\right)+\left(y^2-2.3y+9\right)-16\)
=\(\left(x-2y\right)^2+\left(y-3\right)^2-16\)
ta có : \(\left(x-2y\right)^2\ge0\) với mọi x,y
\(\left(y-3\right)^2\ge0\) với mọi x,y
=> \(\left(x-2y\right)^2+\left(y-3\right)^2\ge0\)
=> \(\left(x-2y\right)^2+\left(y-3\right)^2-16\ge-16\)
=> \(A\ge-16\)
=> MinA=-16 khi \(\begin{cases}x=2y\\y=3\end{cases}\)<=> x=6 và y=3