Bạn viết đề rõ ràng hơn nhé, mình không đọc được :(
Bạn viết đề rõ ràng hơn nhé, mình không đọc được :(
chứng minh nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-zx}{y\left(1-xz\right)}\).Với \(x\ne y,xyz\ne0,yz\ne1,xz\ne1\) thì xy+xz+yz=xyz(x+y+z)
Phân tích đa thức thành nhân tử:
xyz - ( xy + yz - xz) + ( x + y + z) -1
Tính giá trị của biểu thức A = \(\dfrac{yz}{x^2}\)+\(\dfrac{xz}{y^2}\)+\(\dfrac{xy}{z^2}\) , biết rằng xy+yz+xz=0 và xyz \(\ne\) 0
cho x^2+y^2+z^2 lớn hơn hoặc bằng 3 chứng minh x+y+z+xy+yz+xz bé hơn hoặc bằng 6
Tính giá trị của biểu thức
A= xyz+xz-yz-z+xy+x-y-1 với x= -9; y =-21; z=-31
Chứng minh rằng
A) n3+3n2+2n chia hết cho 6 với mọi n là số nguyên
B) 49n+77n-29n-1 chia hết cho 48
C) 35x-14y+29-1 chia hết cho 7 với mọi x,y là số nguyên
1, Cho x2+y2+z2<=3 (x,y,z>0)
Tìm GTNN của P=1/(xy+1)+1/(yz+1)+1/(xz+1)
2, Giải pt nghiệm nguyên:
x(x+1)=y(y+1)(y2+2)
1/ xác định a;b;c;d để : x^4 + ax^3 + bx^2 - 8x +4 = (x^2 + cx +d)^2
2/ cho x^2 +y^2 +z^2 =10 . tính giá trị biểu thức A= (xy+yz+xz)^2 + (x^2-yz)^2 + (z^2 -xy)^2
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)