Cho a,b,c là độ dài ba cạnh của một tam giác và 0\(\le t\le1\)
CMR: \(\sqrt{\dfrac{a}{b+c-ta}}+\sqrt{\dfrac{b}{a+c-tb}}+\sqrt{\dfrac{c}{a+b-tc}}\ge2\sqrt{t+1}\)
Cho a, b, c là độ dài 3 cạnh của 1 tam giác. CMR: \(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
cho a,b,c là độ dài ba cạnh của một tam giác thoả mãn:
\(\Sigma\dfrac{c^{2013}}{a+b-c}=\Sigma a^{2012}\)
Hãy xđ dạng của tam giác đó
1. Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh:
\(\dfrac{1}{\left(a+b-c\right)^2}+\dfrac{1}{\left(b+c-a\right)^2}+\dfrac{1}{\left(c+a-b\right)^2}\)\(\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
2. Cho a, b, c là độ dài ba cạnh của một tam giác. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{a}{2b+2c-a}+\dfrac{b}{2c+2a-b}+\dfrac{c}{2a+2b-c}\)
Cho a,b,c là độ dài ba cạnh của một tam giác .
CMR : \(\Sigma\dfrac{a}{\sqrt[3]{b^3+c^3}}< 2\sqrt[3]{4}\)
Cho a, b, c là độ dài ba cạnh của một tam giác, p là nửa chu vi. Chứng minh rằng:
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
cho a,b,c là độ dài ba cạnh của tam giác có chu vi 2p.cmr:
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho a, b, c là độ dài của một tam giác . CM:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{9}{a+b+c}\ge4\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)
Cho a,b,c là ba cạnh của một tam giác có chu vi bằng 4
chứng minh rằng :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+8>9\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)