Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Monkey D.Dragon

Cho a, b, c là độ dài ba cạnh của một tam giác, p là nửa chu vi. Chứng minh rằng:

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Lê Nhật Phương
30 tháng 12 2017 lúc 17:25

Dễ dàng chứng minh bất đẳng thức phụ :

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a;b>0\)và p - a; p - b; p - c > 0 theo bất đẳng thức trong tam giác.

Áp dụng bất đẳng thức phụ vừa chứng minh, ta có:

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{2p-a-b}=\dfrac{4}{c}\left(1\right)\)

\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{2p-b-c}=\dfrac{4}{a}\left(2\right)\)

\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{2p-c-a}=\dfrac{4}{a}\left(3\right)\)

Cộng (1); (2); (3) theo vế, ta có:

\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\RightarrowĐPCM\)

Ngô Tấn Đạt
30 tháng 12 2017 lúc 14:24

Ta CM BĐT sau :

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Thật vậy ; ta có :

\(\left(x-y\right)^2\ge0\\ \Rightarrow x^2-2xy+y^2\ge0\\ \Rightarrow x^2+y^2\ge2xy\\ \Rightarrow\left(x+y\right)^2\ge4xy\\ \Rightarrow\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\\ \Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\left(đpcm\right)\)

\(\Rightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{2p-\left(a+b\right)}=\dfrac{4}{c}\\ \dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{a}\\ \dfrac{1}{p-a}+\dfrac{1}{p-c}\ge\dfrac{4}{b}\\ \Rightarrow2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\\ \Rightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(đpcm\right)\)

Đạt Trần
30 tháng 12 2017 lúc 21:16

undefined


Các câu hỏi tương tự
Hoàng Ngọc Tuyết Nung
Xem chi tiết
hà mai trang
Xem chi tiết
Bolbbalgan4
Xem chi tiết
Luyri Vũ
Xem chi tiết
Big City Boy
Xem chi tiết
ITACHY
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Đặng Dung
Xem chi tiết
Phạm Duy Phát
Xem chi tiết