Do a,b,c là ba cạnh của tam giác nên a,b,c >0
Với x,y\(\ge\)0, ta có:
\(\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}\)(CO-si)
=>\(xy\le\dfrac{\left(x+y\right)^2}{4}\)
Áp dụng ba lần , ta có:
Lần 1: \(\left(P-a\right)\left(P-b\right)\le\dfrac{\left(P-a+P-b\right)^2}{4}\)(khi a=b)
<=>\(\left(P-a\right)\left(P-b\right)\le\dfrac{c^2}{4}\)(1)
Lần 2: \(\left(P-b\right)\left(P-c\right)\le\dfrac{\left(P-b+P-c\right)^2}{4}\)(b=c)
<=>\(\left(P-b\right)\left(P-c\right)\le\dfrac{a^2}{4}\)(2)
Lần 3: \(\left(P-a\right)\left(P-c\right)\le\dfrac{\left(P-a+P-c\right)^2}{4}\)(a=c)
<=>\(\left(P-a\right)\left(P-c\right)\le\dfrac{b^2}{4}\)(3)
Lấy (1) nhân (2) nhân (3), ta có:
\(\left[\left(P-a\right)\left(P-b\right)\left(P-c\right)\right]^2\le\left(\dfrac{abc}{8}\right)^2\)
<=>\(\left(P-a\right)\left(P-b\right)\left(P-c\right)\le\dfrac{1}{8}abc\)(khi a=b=c)