§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tùng

C\m Giúp mk vs

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{1+ab}\) Với \(a;b\ge1\)

Lightning Farron
14 tháng 1 2017 lúc 22:05

\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)

Kuro Kazuya
16 tháng 1 2017 lúc 19:44

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\frac{b^2+1+a^2+1}{\left(a^2+1\right)\left(b^2+1\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(b^2+1+a^2+1\right)\ge2\left(a^2+1\right)\left(b^2+1\right)\)

\(\Leftrightarrow\left(1+ab\right)\left(b^2+a^2+2\right)\ge2\left(a^2+1\right)\left(b^2+1\right)\)

\(\Leftrightarrow b^2\left(1+ab\right)+a^2\left(1+ab\right)+2\left(1+ab\right)\ge\left(2a^2+2\right)\left(b^2+1\right)\)

\(\Leftrightarrow b^2+ab^3+a^2+a^3b+2+2ab\ge b^2\left(2a^2+2\right)+2a^2+2\)

\(\Leftrightarrow b^2+ab^3+a^2+a^3b+a^3b+2+2ab\ge2a^2b^2+2b^2+2a^2+2\)

\(\Leftrightarrow ab^3+a^3b+2+2ab\ge2a^2b^2+a^2+b^2+2\)

\(\Leftrightarrow ab^3+a^3b+2ab\ge2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab\left(a^2+b^2\right)+2ab\ge2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab\left(a^2+b^2\right)-\left(a^2+b^2\right)\ge2a^2b^2-2ab\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(ab-1\right)\ge2ab\left(ab-1\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đpcm )


Các câu hỏi tương tự
Thiều Khánh Vi
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Nguyễn Hiền
Xem chi tiết
Linh Châu
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Bùi Lê Trung Kiên
Xem chi tiết
Nguyễn Uyên
Xem chi tiết