§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hiền

Cho các só thực dương a,b,c thỏa mãn ab+bc+ca=3 . Chứng minh rằng :

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{2}\)

Khôi Bùi
8 tháng 4 2019 lúc 21:18

Cho bài toán phụ : Cho a ; b là các số thực dương

C/m : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

Do a ; b là các số thực dương \(\Rightarrow ab\ge1\)

Ta có : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

\(\Leftrightarrow\frac{1}{a^2+1}-\frac{1}{ab+1}+\frac{1}{b^2+1}-\frac{1}{ab+1}\ge0\)

\(\Leftrightarrow\frac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\frac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{\left(ab-a^2\right)\left(b^2+1\right)+\left(ab-b^2\right)\left(a^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{ab^3-a^2b^2+ab-a^2+a^3b-a^2b^2+ab-b^2}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{ab\left(a^2+b^2\right)+2ab-2a^2b^2-a^2-b^2}{...}\ge0\)

\(\Leftrightarrow\frac{\left(a^2+b^2\right)\left(ab-1\right)-2ab\left(ab-1\right)}{...}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{...}\ge0\)

Dễ thấy mẫu luôn dương , tử \(\ge0\) => luôn đúng

=> BĐT được c/m

Áp dụng BĐT phụ ( từ bài toán phụ trên ) , ta có :

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{2}{ab+1}+\frac{1}{c^2+1}=\frac{2c^2+2+ab+1}{\left(ab+1\right)\left(c^2+1\right)}=\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\)

( * )

Có : \(\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}-\frac{3}{2}=\frac{4c^2+2ab+6-3abc^2-3c^2-3ab-3}{...}=\frac{c^2+3-ab-3abc^2}{...}=\frac{c^2+bc+ac-3abc^2}{...}=\frac{c\left(a+b+c-3abc\right)}{...}\)\(\left(ab+bc+ac=3\right)\) ( 1 )

Do a , b , c là các số thực dương , áp dụng BĐT Cô - si cho 3 số , ta có : \(\left(a+b+c\right)\left(ab+bc+ac\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)

\(\Rightarrow a+b+c\ge3abc\left(ab+bc+ac=3\right)\) ( 2 )

Từ ( 1 ) ; ( 2 ) \(\Rightarrow\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}-\frac{3}{2}\ge0\)

\(\Rightarrow\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\frac{3}{2}\) ( *' )

Từ (*) và (*') => ĐPCM

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)


Các câu hỏi tương tự
Kuramajiva
Xem chi tiết
Linh Châu
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
TXT Channel Funfun
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Incursion_03
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Nguyễn Túc Cầu
Xem chi tiết
Nguyễn Uyên
Xem chi tiết