Ta sẽ luôn có n là 1 trong 2 dạng sau: \(\left\{{}\begin{matrix}2t\\2t+1\end{matrix}\right.\)với \(t\) là 1 số tự nhiên bất kì thỏa mãn \(t\ge0\)
Với \(n=2t\) ta có: \(\left(n+2016\right)\left(n+2017\right)=\left(2t+2016\right)\left(2t+2017\right)=2\left(t+1008\right)\left(2t+2017\right)⋮2\)
Với \(n=2t+1\) ta có: \(\left(n+2016\right)\left(n+2017\right)=\left(2t+1+2016\right)\left(2t+1+2017\right)=\left(2t+2017\right)\left(2t+2018\right)=2\left(2t+2017\right)\left(t+1009\right)⋮2\)
Suy ra đpcm