Với \(x\ne\pm y\), ta có:
\(\frac{x^2+y^2}{x^2-y^2}:\left(\frac{x}{x+y}-\frac{y}{y-x}\right)=\frac{x^2+y^2}{\left(x+y\right)\left(x-y\right)}:\left[\frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\right]\)
\(=\frac{x^2+y^2}{\left(x+y\right)\left(x-y\right)}:\frac{x\left(x-y\right)+y\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}=\frac{x^2+y^2}{\left(x+y\right)\left(x-y\right)}.\frac{\left(x+y\right)\left(x-y\right)}{x^2+y^2}=1\) (ĐPCM)
KL: ..............