Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
le duc minh vuong

Chứng Minh x2+2y2-2xy+2x-4y+3>0 với mọi số thực x,y

Nguyễn Nam
7 tháng 12 2017 lúc 17:25

\(x^2+2y^2-2xy+2x-4y+3\)

\(=x^2+y^2+y^2-2xy+2x-2y-2y^2+1+1+1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(2x-2y\right)+1+1\)

\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-1\right)^2+1\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y-1\right)^2+1\)

\(=\left(x-y+1\right)^2+\left(y-1\right)^2+1\)

\(\left(x-y+1\right)^2+\left(y-1\right)^2\ge0\forall x;y\)

Nên \(\left(x-y+1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)

Vậy \(x^2+2y^2-2xy+2x-4y+3>0\forall x;y\)

Amanogawa Kirara
7 tháng 12 2017 lúc 17:30
Ta có: x2+2y2-2xy+2x-4y+3 = (x2 +y2 +1 - 2xy + 2x - 2y) + (y2-2y+1) +1 = (x-y+1)2 + (y-1)2 + 1 Vì (x-y+1)2 ≥ 0 với mọi x,y ∈ R (y-1)2 ≥ 0 với mọi y ∈ R ⇔ (x-y+1)2 + (y-1)2 ≥ 0 với mọi x,y ∈R ⇔ (x-y+1)2 + (y-1)2 +1 ≥ 1 > 0 với mọi x,y ∈R Vậy x2+2y2-2xy+2x-4y+3 > 0 với mọi x,y ∈ R.

Các câu hỏi tương tự
Lê Thành Nam
Xem chi tiết
Ngô Quang Tùng
Xem chi tiết
Đỗ Đàm Phi Long
Xem chi tiết
Hà Hoàng Long
Xem chi tiết
Hoàng Thảo Linh
Xem chi tiết
Lan Anh
Xem chi tiết
Park Sora
Xem chi tiết
So Yummy
Xem chi tiết
Thảo Vũ
Xem chi tiết