x2 + y2 - 2xy + x - y + 1 = (x - y)2 + (x - y) + 1
Đặt x - y = t
Ta có: x2 + y2 - 2xy + x - y + 1 = t2 + t + 1 = (t + \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) > 0 với mọi t
x2 + y2 - 2xy + x - y + 1 = (x - y)2 + (x - y) + 1
Đặt x - y = t
Ta có: x2 + y2 - 2xy + x - y + 1 = t2 + t + 1 = (t + \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) > 0 với mọi t
Làm hộ mình bài này nha chứng minh biểu thức
a) x^2-2xy+1>0 với mọi số thực x, y
Chứng Minh x2+2y2-2xy+2x-4y+3>0 với mọi số thực x,y
cho x,y∈ R ; x≠y
tìm min P=x2-6xy+6y2/x2-2xy+y2
Cho \(x;y;z>0;x+y+z=1\)
Chứng minh : \(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\ge9\)
Cho x + y + z = 0. Chứng minh rằng ( x2 + y2 + z2)2 = 2( x4 + y4 + z4)
HELP ME !!!
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
1. Tìm x ∈ Z để a) C = x2+x+1x2−x+1x2+x+1x2−x+1 ∈ Z
2. Tìm x,y ∈ Z thỏa mãn:
a) x2y - 2xy + 2y = x + 1
b) x2y2 - xy2 = x - 2y2 + 1
3. Chứng minh: x2 + y2⋮4⇔ x⋮2 và y⋮2
Giúp mk nhanh với các bạn ơi. Thanks trước!!!!!!
Chứng minh rằng: \(x^2=\frac{x^2+y^2-1+2xy}{x^2-y^2+z+2x}=\frac{x+y-1}{x-y+1}\)