\(\left(\sin a+\cos a\right)^2=\sin^2a+\cos^2a+2\cdot\sin a\cdot\cos a\)
\(=1+2\cdot\sin a\cdot\cos a\)
\(=\tan^2a\cdot\cot^2a+2\cdot\sin a\cdot\cos a\)
\(\left(\sin a+\cos a\right)^2=\sin^2a+\cos^2a+2\cdot\sin a\cdot\cos a\)
\(=1+2\cdot\sin a\cdot\cos a\)
\(=\tan^2a\cdot\cot^2a+2\cdot\sin a\cdot\cos a\)
Cho góc nhọn α
a) Rút gọn biểu thức S=\(\cos^2\alpha+tg^2.\cos^2\alpha\)
b) Chứng minh:
\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=4\)
Help me plsssssssssss
Sử dụng định nghĩa các tỉ số lượng giác của một góc nhọn để chứng minh rằng : Với góc nhọn \(\alpha\) tùy ý, ta có :
a) \(tg\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)
\(cotg\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)
\(tg\alpha.cotg\alpha=1\)
b) \(\sin^2\alpha+\cos^2\alpha=1\)
Gợi ý : Sử dụng định lí Pytago
Chứng minh rằng với α là góc nhọn thì giá trị của các biểu thức sau không phụ thuộc vào độ lớn của α
A=\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
B=\(\sin^4\alpha+\cos^4\alpha-1+2\sin^2\alpha.\cos^2\alpha\)
C=\(\sin^4\alpha-\cos^4\alpha+2\cos^2\alpha-1\)
chứng minh với góc nhọn \(\alpha\) túy ý có;
\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
cotg\(\alpha\)=\(\frac{\cos\alpha}{sin\alpha}\)
\(\tan\alpha\) . cotg \(\alpha\)=1
\(\sin^2\alpha+\cos^2\alpha=1\)
Chứng minh rằng với mọi gíc nhọn α tùy ý, mỗi biểu thức sau không phụ thuộc α
a, A=(Sin α + Cos α )2 + (Sin α - Cos α )2
b, B=Sin6 α + Cos6 α + 3Sin2 α . Cos2 α
D = \(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}\)
Giúp mk vs please
Rút gọn .
\(A=\dfrac{1+2\sin\alpha\cos\alpha}{\sin\alpha+\cos\alpha}\)
\(B=\left(\sin\alpha+\cos\alpha\right)^2-\left(\cos\alpha-\sin\alpha\right)^2\)
\(C=\dfrac{\left(\sin\alpha-\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)}{\sin\alpha\cos\alpha}\)
Mấy bạn giúp đỡ được phần nào thì giúp , giúp hết thì tốt quá .
Cho \(\sin\alpha=\dfrac{1}{2}\). Hãy tìm \(\cos\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?
1. Chứng minh rằng: \(\frac{1-2\sin.\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\) (\(\alpha\ne45^o\))
2. Chứng minh: \(\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\) không phụ thuộc vào x