giả sử trong m số tự nhiên liên tiếp tồn tại ít nhất 2 số P và Q khi chia cho m có cùng số dư là r (m> r >=0), (P>Q)
do đó P-Q<m
P = p.m + r
Q = q.m + r
p>q (Do các số nguyên liên tiếp không bằng nhau);
=> P-Q = (p-q).m >m (mâu thuẫn)
mà m> r >=0 nên trong m số tự nhiên liên tiếp r nhận các giá trị 0; 1;... đến m-1
do đó có duy nhất 1 giá trị r=0 tức là có duy nhất 1 số chia hết cho m....