Ta có:
\(\left[\left(x+1\right)-\left(y+1\right)\right]^2\ge0\) với mọi x,y
\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\ge0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2\ge2\left(x+1\right)\left(y+1\right)\)
\(\Leftrightarrow x^2+2x+1+y^2+2y+1\ge2\left(x+1\right)\left(y+1\right)\)
Vậy..
giả sử \(x^2+2x+1+y^2+1+2y\ge2\left(x+1\right)\left(y+1\right)\) đúng.
tương đương :\(\left(x+1\right)^2+\left(y+1\right)^2\ge2\left(x+1\right)\left(y+1\right)\)
\(\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\ge0\\ \Leftrightarrow\left[\left(x+1\right)-\left(y-1\right)\right]^2\ge0\left(\text{luôn đúng}\right)\)
nên \(x^2+2x+1+y^2+1+2y\ge2\left(x+1\right)\left(y+1\right)\) cũng đúng.