\(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)\ge0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Rightarrow x=y=z\)
Bài này quá là cơ bản mình nghĩ bn nên làm thử trc khi hỏi