Chứng minh: \(\dfrac{sin3x+sinx}{cosx}.\left(tanx+cotx\right)=4\)
chứng minh rằng
3) \(\frac{sin2x-sinx}{1-cosx+cos2x}=tanx\)
4) \(\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\frac{sin^{2014}x+cot^{2014}x}{1+sin^{2014}x.tan^{2014}x}\)
chứng minh rằng 1+ sinx+cosx+tanx= (1+ cosx)(1+tanx)
rút gọn các biểu thức lượng giác sau:
\(\frac{sin^2x}{cosx\left(1+tanx\right)}-\frac{cos^2x}{sinx\left(1+cotx\right)}=sinx-cosx\)
\(\left(tanx+\frac{cosx}{1+sinx}\right)\left(cotx+\frac{sinx}{1+cosx}\right)=\frac{1}{sinx.cosx}\)
chứng minh rằng
3) \(cotx-tanx-2tan2x=4cot4x\)
Chứng minh rằng :
\(\frac{1-cos2x}{2\left(1+cosx\right)}-\frac{2cos^2x-1}{sinx\left(1-cotx\right)}=1+sinx\)
Recall NVL.
Chứng minh rằng:
a) \(\dfrac{1+sin^2x}{1-sin^2x}=1+2tan^2x\)
b) \(\dfrac{sinx}{1+cosx}+\dfrac{1+cosx}{sinx}=\dfrac{2}{sinx}\)
c) \(\dfrac{1-sinx}{cosx}=\dfrac{cosx}{1+sinx}\)
d) \(\left(1-cosx\right)\left(1+cot^2x\right)=\dfrac{1}{1+cosx}\)
e) \(1-\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=sinx.cosx\)
f) \(\dfrac{1+cosx}{1+cosx}-\dfrac{1-cosx}{1+cosx}=\dfrac{4cotx}{sinx}\)
Chứng minh: \(\dfrac{sinx}{1+cosx}+cotx=\dfrac{1}{sinx}\)
chứng minh đẳng thức lượng giác sau không phụ thuộc vào x:\(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}+\left(tanx-cotx\right)^2-\left(tanx+cotx\right)^2\)