Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng các số \(\sqrt{2},\sqrt{3},\sqrt{5},\sqrt{6},...\) là những số vô tỉ
1) Chứng minh rằng : \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\)
2) Tìm x,y để : \(C=-18-\left|2x-6\right|-\left|3y+9\right|\)đạt giá trị lớn nhất .
Helppp Meeee!!! Mơn trc ạ !!! <3
a,\(\sqrt{1}+\sqrt{9}+\sqrt{25}+\sqrt{49}+\sqrt{81}\) c\(\sqrt{0,04}+\sqrt{0,09}+\sqrt{0,16}\)
b,\(\sqrt{\dfrac{1}{4}}+\sqrt{\dfrac{1}{9}}+\sqrt{\dfrac{1}{36}}+\sqrt{\dfrac{1}{16}}\) e\(\sqrt{2^2}+\sqrt{4^2}+\sqrt{\left(-6^2\right)}+\sqrt{\left(-8^2\right)}\)
j,\(\sqrt{1,44}-\sqrt{1,69}+\sqrt{1,96}\)
g, \(\sqrt{\dfrac{4}{25}}+\sqrt{\dfrac{25}{4}}+\sqrt{\dfrac{81}{100}}+\sqrt{\dfrac{9}{16}}\)
d\(\sqrt{81}-\sqrt{64}+\sqrt{49}\)
giúp mình với
1, tính
a, \(7\times\sqrt{\dfrac{6^2}{7^2}}-\sqrt{25}+\sqrt{\dfrac{\left(-3\right)^2}{2}}\)
b, \(-\sqrt{\dfrac{64}{49}}-\dfrac{3}{5}\times\sqrt{\dfrac{25}{64}}+\sqrt{0,25}\)
c, \(\sqrt{\dfrac{10000}{5}}-\dfrac{1}{4}.\sqrt{\dfrac{16}{9}}+\sqrt{\dfrac{\left(-3\right)^2}{\left(4\right)}}\)
d, \(\left|\dfrac{1}{4}-\sqrt{0,0144}\right|-\dfrac{3}{2}+\sqrt{\dfrac{81}{169}}\)
bài 1: tính
a) 3/4+(-5/2)+(-3/5)
b) \(\sqrt{\left(7\right)^2}+\sqrt{\dfrac{25}{16}-\dfrac{3}{2}}\)
c)\(\dfrac{1}{2}.\sqrt{100}-\sqrt{\dfrac{1}{16}+\left(\dfrac{1}{3}\right)^0}\)
Ta có : \(\sqrt{25}=5;-\sqrt{25}=-5;\sqrt{\left(-5\right)^2}=\sqrt{25}=5\)
Theo mẫu trên, hãy tính :
a) \(\sqrt{36}\)
b) \(-\sqrt{16}\)
c) \(\sqrt{\dfrac{9}{25}}\)
d) \(\sqrt{3^2}\)
e) \(\sqrt{\left(-3\right)^2}\)
Chứng minh rằng:
1) \(\sqrt{15}\) là số vô tỉ.
2) \(5-\sqrt{2}\) là số vô tỉ
Bài 1: Tính
a) \(\sqrt{49}+\sqrt{4}\)
b) \(\sqrt{0,25}-\sqrt{0,01}\)
c) \(\sqrt{\dfrac{16}{25}}-\sqrt{\dfrac{1}{81}}\)
d) \(\sqrt{64}-\sqrt{16}+\sqrt{\left(-3\right)^2}\)
e) \(2-\sqrt{0,36}\)
1)so sánh các số sau:
a)0,5\(\sqrt{100}\)-\(\sqrt{\dfrac{4}{25}}\) và (\(\sqrt{1\dfrac{1}{9}}\)-\(\sqrt{\dfrac{9}{16}}\)):5
b)\(\sqrt{25+9}\) và \(\sqrt{25}+\sqrt{9}\)
2) CMR: Với a,b dương thì \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)