Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Ngọc Linh

Chứng minh rằng nếu \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\) thì \(\dfrac{a}{b}=\dfrac{c}{d}\)

 Mashiro Shiina
4 tháng 8 2017 lúc 16:30

Theo đề bài ta có:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{a}{c}\left(1\right)\)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{b}{d}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\rightarrowđpcm\)

Nịna Hatori
4 tháng 8 2017 lúc 16:48

- Theo đề bài:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

- Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)\(=\dfrac{a+b+a-b}{c+d+c-d}\)\(=\dfrac{2a}{2c}=\dfrac{a}{c}\) (1)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)\(=\dfrac{a+b-\left(a-b\right)}{c+d-\left(c-d\right)}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{2b}{2d}=\dfrac{b}{d}\) (2)

- Từ (1) và (2)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\)( đpcm )


Các câu hỏi tương tự
Cô nàng bí ẩn
Xem chi tiết
 Quỳnh Anh Shuy
Xem chi tiết
hoàng bắc nguyệt
Xem chi tiết
nguyễn ngọc tuấn
Xem chi tiết
___Vương Tuấn Khải___
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
Phạm Thị Vân Anh
Xem chi tiết
Cao Hồ Ngọc Hân
Xem chi tiết