Áp dụng bdt cosi:
\(\frac{a^4}{b}+\frac{b^4}{c}+\frac{c^4}{a}\ge3\sqrt[3]{\frac{a^4}{b}.\frac{b^4}{c}.\frac{c^4}{a}}=3abc\)
Áp dụng bdt cosi:
\(\frac{a^4}{b}+\frac{b^4}{c}+\frac{c^4}{a}\ge3\sqrt[3]{\frac{a^4}{b}.\frac{b^4}{c}.\frac{c^4}{a}}=3abc\)
cho 3 số thực a,b,c>0 thỏa mãn: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=5\)
Chứng minh rằng: \(\frac{17}{4}\le\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\le1+4\sqrt{2}\)
cho a b c là các số thực dương thỏa mãn a+b+c=3. chứng minh \(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\le\frac{3}{4}\)
Giúp e mấy bài này với ạ.
1) Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 1.
Chứng minh rằng: \(\frac{3ab+1}{a+b}+\frac{3bc+1}{b+c}+\frac{3ac+1}{c+a}\ge4.\)
2) Cho các số thực dương a, b, c sao cho \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\le1\)
Chứng minh rằng: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\ge125.\)
3) Cho ba số thực dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức
P = \(\frac{a^2+b^2}{9-ab}+\frac{b^2+c^2}{9-bc}+\frac{c^2+a^2}{9-ca}.\)
4) Cho a, b, c là các số thực dương. Chứng minh rằng: \(\sqrt{\frac{bc}{a\left(3b+a\right)}}+\sqrt{\frac{ac}{b\left(3c+b\right)}}+\sqrt{\frac{ab}{c\left(3a+c\right)}}\ge\frac{3}{2}\)
1. Giải ft
3(\(\sqrt{6-5x}-\sqrt{x+3}\) = 3x2 - x-5.
2. Cho a,b,c là các số thực dương sao cho a + b + c = 1. Chứng minh rằng :
\(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\ge\frac{9}{4}.\)
Cho 3 số thực dương \(a,b,c\) thỏa mãn \(abc=1\). Chứng minh rằng \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\ge2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho ba số thực dương a, b, c. Chứng minh rằng:
a) \(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge64\)
b) \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
cho các số thực dương a b c d thỏa \(a^2+b^2+c^2+d^2=4\)
chứng minh \(\left(a+b+c+d-2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{2}\right)\ge9\)
Cho a, b, c là ba số dương và a + b + c = 6. Chứng minh rằng:
\(\frac{a}{\sqrt{b^3+1}+1}+\frac{b}{\sqrt{c^3+1}+1}+\frac{c}{\sqrt{a^3+1}+1}\ge\frac{3}{2}\)
Cho a,b,c là các số dương và \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1\). Chứng minh rằng:
\(\sqrt{\frac{b}{a}}+\sqrt{\frac{c}{b}}+\sqrt{\frac{a}{c}}\le1\)