Ta có :
n\(^3\) + 11n
= n\(^3\) - n + 12n
= n ( n\(^2\) - 1 ) + 12n
= n ( n - 1 )( n + 1 ) + 12n
= ( n - 1 )n( n + 1 ) + 12n
Vì ( n - 1 )n( n + 1 ) là 3 số nguyên liên tiếp.
⇒ ( n - 1 )n( n + 3 ) có tích của 3 số nguyên liên tiếp nên phải chia hết cho 6.
Lại có : 12 sẽ chia hết cho 6
⇒ 12n chia hết cho 6
Vậy ( n - 1 )n( n + 1 ) + 12n sẽ chia hết cho 6
Vậy n\(^3\) + 11n chia hết cho 6