Cho tam giác ABC nhọn các đường cao AA', BB', CC' cắt nhau tại H.
CMR: \(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=1\)
Cho tam giác ABC cân tại A, đường cao AM, gọi I là trung điểm AC, K là điểm.
đối xứng của M qua L
a./ Chứng minh rằng: Tứ giác AMCK là hình chữ nhật
'b/ Tìm điều kiện của tam giác ABC để tứ giác AKCM là hình vuông.
c/ So sánh diện tích tam giác ABC với điện tích tứ giác AKCM.
Cho tam giác ABC với BC = a, CA = b, AB = c và ba đường cao ứng với ba cạnh lần lượt có độ dài ha,hb,hc Gọi r là khoảng cách từ giao điểm của ba đường phân giác của tam giác đến một cạnh của tam giác. Chứng minh 1/ha+1/hb+1/hc=1/r
Cho tam giác ABC, I là một điểm nằm trong tam giác. IA, IB, IC theo thứ tự cắt BC, CA, AB tại M, N, P. Chứng minh \(\dfrac{MB}{MC}.\dfrac{NC}{NA}.\dfrac{PA}{PB}=1\)
1/ Cho H tùy ý nằm trong tam giác ABC. Tia AH,BH,CH cắt BC,AC,AB tại D,E,F. Chứng minh \(\dfrac{AH}{HD}+\dfrac{BH}{HE}+\dfrac{CH}{HF}\ge6\)
2/ Cho hình bình hành ABCD. Trên BC,CD lấy M,N tùy ý. AM,AN cắt BD tại E,F. Vẽ Ex//AD, Fy//AD, \(Ex\cap Fy=\left\{K\right\}\)
a) Chứng minh \(S_{AEF}=S_{KBD}\)
b) Chứng minh rằng nếu \(S_{AEF}=S_{EMNF}\) thì M,N,K thẳng hàng
3/ Tam giác ABC có 3 đường phân giác AD,BE,CF. Gọi \(S_{ABC}=S,S_{DEF}=S'\). Chứng minh rằng \(S\ge4S'\)
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm.
a) Tính đường cao AH.
b) Kẻ HE⊥AB, HF⊥AC (E∈AB, F∈AC). Tính EF.
c) Gọi M,N lần lượt là trung điểm của HB và HC. Tứ giác MNFE là hình gì? Vì sao? Tính diện tích tứ giác đó.
Cho tam giác ABC vuông tại A có AB=3cm;AC=4cm . Gọi I là trung điểm của BC. Qua M lần lượt kẻ các đường thẳng vuông với AB và AC tại K và H
a) Chứng minh tứ giác AKIH là hình chữ nhật;
b) Lấy điểm D đối xứng vs điểm I qua điểm K. Chứng Minh tứ giác IBDA là hình thoi
Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Gọi M,N lần lượt là trung điểm của HC,CE. Các đường thẳng AM,AN cắt HE tại G và K.
a)Chứng minh tứ giác AHCE là hình chữ nhật
b)Chứng minh HG=GK=KE
Mọi người giúp mình nha. Mình cảm ơn nhiều.