\(cos^4x-sin^4x=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)\)
\(=cos^2x-sin^2x=cos^2x-\left(1-cos^2x\right)\)
\(=2cos^2x-1\)
\(cos^4x-sin^4x=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)\)
\(=cos^2x-sin^2x=cos^2x-\left(1-cos^2x\right)\)
\(=2cos^2x-1\)
1) Mệnh đề nào sau đây đúng : Giải thích và chứng minh
\(A.sin^4x-cos^4x=1-2cos^2x\)
B.\(sin^4x-cos^4x=1-2sin^2x.cos^2x\)
C.\(sin^4x-cos^4x=1-2sin^2x\)
D.\(sin^4x-cos^4x=2cos^2x-1\)
Chứng minh các biểu thức sau không phụ thuộc x:
a) A = \(2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)\)
b) \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}\)
c) C = \(2cos^4x-sin^4x+sin^2x.cos^2x+3sin^2x\)
Bài 1 chứng minh biểu thức sau ko phụ thuộc vào biến x
1/B=cos^2xcot^2x +3cos^2x - cot^2x + 2sin^2x
2/M=2cos^4x -sin^4x +sin^2xcos^2x +3sin^2x
Chứng minh rằng: sin 5x - 2 sin x(cos 4x + cos 2x) = sin x
Chứng minh các biểu thức sau không phụ thuộc vào x:
a) \(A=2\left(cos^6x+sin^6x\right)-3\left(cos^4x+sin^4x\right)\)
b) \(B=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-sin^8x-cos^8x\)
c) \(C=\dfrac{sin^2x}{1+cotgx}+\dfrac{cos^2x}{1+tgx}+sinx.cosx\)
d) \(D=\dfrac{cotg^2a-cos^2x}{cotg^2x}+\dfrac{sinx.cosx}{cotgx}\)
e) \(E=3\left(sin^8x-cos^8x\right)+4\left(cos^6x-2sin^6x\right)+6sin^4x\)
f) \(F=\dfrac{tg^2x}{sin^2x.cos^2x}-\left(1+tg^2x\right)^2\)
Chứng minh biểu thức sau không phụ thuộc x:
\(C=2\left(cos^4x+sin^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)
Chứng minh với x \(\ne\) \(\frac{k\pi}{2}\); k \(\in\) Z \(\frac{1+\sin^4x-\cos^4x}{1-\sin^6x-\cos^6x}=\frac{2}{3\cos^2x}\)
Rút gọn các biểu thức sau
1, \(\dfrac{1+\cot x}{1-\cot x}-\dfrac{2+2\cot^2x}{\left(\tan x-1\right)\left(\tan^2x+1\right)}\)
2, \(\sqrt{\sin^4x+6\cos^2x+3\cos^4x}+\sqrt{\cos^4x+6\sin^2x+3\sin^4x}\)
\(\sqrt{\sin^4x+4\cos^2x}+\sqrt{\cos^4x+4\sin^2x}\)
=\(\sqrt{\left(1-cos^2x\right)^2+4\cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4\sin^2x}\)
=\(\sqrt{\cos^4x-2\cos^2x+1+4\cos^2x}+\sqrt{\sin^4x-2\sin^2x+1+4\sin^2x}\)
=\(\sqrt{\cos^4x+2\cos^2x+1}+\sqrt{\sin^4x+2\sin^2x+1}\)
=\(\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)
=\(cos^2x+1+sin^2x+1=3\)