TXĐ: \(D=\left[-1;1\right]\) là miền đối xứng
\(f\left(-x\right)=\sqrt{1-x}-\sqrt{1+x}=-\left(\sqrt{1+x}-\sqrt{1-x}\right)=-f\left(x\right)\)
\(\Rightarrow\) Hàm đã cho là hàm lẻ
TXĐ: \(D=\left[-1;1\right]\) là miền đối xứng
\(f\left(-x\right)=\sqrt{1-x}-\sqrt{1+x}=-\left(\sqrt{1+x}-\sqrt{1-x}\right)=-f\left(x\right)\)
\(\Rightarrow\) Hàm đã cho là hàm lẻ
Xét tính chẵn lẻ của các hàm số sau
c) y = \(\sqrt{2x+9}\)
d) y = \(\left(x-1\right)^{2010}+\left(x+1\right)^{2010}\)
e) y = \(\dfrac{x^4+3x^2-1}{x^2-4}\)
f) y = \(\left|x\right|^7.x^3\)
g) y = \(\sqrt[3]{5x-3}+\sqrt[3]{5x+3}\)
h) y = \(\sqrt{3+x}-\sqrt{3-x}\)
GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP
xét tính chẵn lẻ của hàm số sau
y=2x2+1 y=5x2 -1/x
y=5x3 - 2x
y=\(\sqrt{x-1}\)
Chứng minh rằng hàm số \(y=x^3+x\) đồng biến trên R
Áp dụng giải phương trình sau \(x^3-x=\sqrt[3]{2x+1}+1\)
Hi guys, please help me
i need it now !!!
cho hàm số f(x) = \(\left\{{}\begin{matrix}\sqrt{x-1},x\ge2\\\dfrac{1}{x-3},x< 2\end{matrix}\right.\) chọn phát biểu sai:
a. f(2)=1
b. f(0)=\(\dfrac{-1}{3}\)
c. f(1)=0
d. f(10)=3
cho hàm số y=f(x)=\(\dfrac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}\) có đồ thị là \(\left(C_m\right)\) (m là tham số ) số giá trị của m để đồ thị \(\left(C_m\right)\) nhận trục Oy làm trục đối xứng
xét tính đơn điệu của các hàm số sau :
a) y=1/2x+5
b)y=3x-1
c)y=|2x-1|
d)y=\(\sqrt{x^2}+6x+9\)
e)y=|1-x| +|2x+4|
f) y=\(\sqrt{x^2-4+4}\)-2|x-1|
Tìm tập xác định của hàm sô \(y=\sqrt{x+2}+\dfrac{x^3}{4\left|x\right|-3}\) và hàm số \(y=\dfrac{x}{\left|x\right|x+1}-\sqrt{3-x}\)
xét tính chẵn lẻ của các hàm số
\(y=\sqrt{2-x}+\sqrt{2+x}\)
\(y=\sqrt{3+x}-\sqrt{3-x}\)
\(y=\sqrt{5+x}-\sqrt{3-x}\)
\(y=\sqrt{x^2-4x+4}+\left|x+2\right|\)
\(y=\sqrt{x^2+1}+\sqrt{x+1}+\sqrt{x-1}\)
\(y=\left|x+4\right|-\left|4-x\right|\)
xét tính đồng biến nghịch biến của hàm số
a)\(y=f\left(x\right)=\sqrt{x^2+2x+3}\)
b) \(y=f\left(x\right)=x-\sqrt{1-x}\) với x<1