\(A=25.3\left(4^{1975}+4^{1974}+...+4^2+4+1\right)+25\)
\(=25\left(4-1\right)\left(4^{1975}+4^{1974}+...+4^2+4+1\right)+25\)
Áp dụng hằng đẳng thức, ta có : \(A=25\left(4^{1976}-1\right)+25=25.4^{1976}\)
Vậy \(A⋮4^{1976}\)
Tính gọn biểu thức \(4^{1975}+4^{1974}+....+4^2+4+1\)ta được:\(\dfrac{4^{1976}-1}{3}\)
Do đó, A= \(75.\dfrac{4^{1976}-1}{3}+25=25\left(4^{1976}-1\right)+25=25.4^{1976}-25+25=25.4^{1976}\)\(\Rightarrow A⋮4^{1976}\)