Bài 1: Mở đầu về phương trình

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
thantoc502

chứng minh rằng tổng \(A=\left(7^1+7^2+7^3+7^4+...+7^4k\right)\)trongđó k là số tự nhiên chia hết cho 400

đề bài khó wá
22 tháng 2 2018 lúc 10:24

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

\(A=\left(7+7^2+7^3+7^4\right)+7^4\left(7+7^2+7^3+7^4\right)+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)

\(A=\left(7+7^2+7^3+7^4\right)\left(1+7+7^4+7^8+...+7^{4k-4}\right)\)

\(A=7\left(1+7+49+343\right)\left(1+7^4+7^8+...+7^{4k-4}=7.400.M\right)\)

vậy \(A⋮400\)


Các câu hỏi tương tự
thantoc502
Xem chi tiết
juihdfshd
Xem chi tiết
Trần An
Xem chi tiết
Trần An
Xem chi tiết
Tran Thi Loan
Xem chi tiết
Cận
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hoài An
Xem chi tiết