Câu 1: Chứng minh rằng bất đẳng thức sau đây đúng với mọi số dương a,b: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
1>chứng tỏ rằng với bất kì giá trị nào của n thì các bất đẳng thức sau luôn luôn đúng
a/ 3(m+1)+m< 4(2+m)
b/ (m-2)2 > m(m-4)
2>chứng minh rằng các bất đẳng thức sau là đúng
a/ b(b+a)≥ ab
b/ a2-ab+b2≥ ab
3/chứng minh rằng bất đẳng thức sau luôn luông đúng
a/10a2-5a+1≥ a2+a
b/a2-a≤ 50a2-15a+1
4/giả sử n là số tự nhiên.Hãy chứng tỏ rằng:
\(\frac{1}{2}\)+\(\frac{1}{3\sqrt{2}}\)+\(\frac{1}{4\sqrt{3}}\)+....+\(\frac{1}{\left(n+1\right)\sqrt{n}}\)<2
5>chứng tỏ rằng với mọi số a,b,c,d ta có:
(ab+cd)2≤ (a2+c2)(b2+d2)
\(\frac{x^2+y^2+z^2}{3}\ge\frac{x+y+z}{3}\)
chứng minh bất đẳng thức trên
*vế bên phải là để trong ngoặc và bình phương nhé
Chứng minh các bất đẳng thức sau:
1, x3 + y3 \(\ge\)x2y+xy2 (x, y \(\ge\)0)
2, x4+ y4 \(\ge\)x3y+xy3
3, a2+b2+1\(\ge\)ab+a+b
4, a2+b2+c2+\(\frac{3}{4}\)\(\ge\)a+b+c
5,a2+b2+c2+d2\(\ge\)a(b+c+d)
6, x3-4x+5 >0
7, a4+b4+2 \(\ge\)4ab
8, \(\frac{ab}{a+b}\)+\(\frac{bc}{b+c}\)+\(\frac{ca}{c+a}\le\)\(\frac{a+b+c}{2}\)(với a,b,c>0)
Chứng minh:
a) \(x^4+y^4\ge x^3y+xy^3\)
b) \(\frac{x^2}{x^4+1}\le\frac{1}{2}\)
Thùy theo giá trị của m, hãy giải các bất phương trình sau:
a) \(\frac{3-2mx}{x^2+1}\) ≤ 0
b) \(\frac{x^2-mx+3}{x^2+4}-1\)≥0
Chứng minh bất đẳng thức : \(a^2+\dfrac{b^2}{4}\ge ab\) .Cảm ơn trước nha!
Chứng minh bất đẳng thức : \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\) vs \(a\ge b\ge c>0\)
cho x,y,z lớn hơn hoặc bằng 1
a)\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
b)\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{3}{1+xyz}\)