Chứng minh bất đẳng thức:\(\dfrac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}\le\sqrt{x+9}\) với x là số thực không âm. Dấu đẳng thức xảy ra khi nào?
CM bất đẳng thức sau
\(\sqrt[4]{x}+\sqrt[4]{y}\le\sqrt{8\left(x+y\right)}\)
Cho x, y, z > 0 thoả mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\). Chứng minh: \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Chứng minh: \(\dfrac{1}{\sqrt{1+x^2}}+\dfrac{1}{\sqrt{1+y^2}}\ge\dfrac{2}{\sqrt{1+xy}}\)
Cho x,y,z>1 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\)
Chứng minh \(\sqrt{x+y+z}\ge\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\)
Cho biểu thức: \(P=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn P
b) Chứng minh P \(\ge\) 0
Với mọi x, y, z >= 0 . Chứng minh rằng
\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\)
Rút gọn biểu thức P\(=\)(\(\frac{1}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{y-\sqrt{xy}}\))\(\div\)\(\frac{2\sqrt{x}}{x-y}\) với x,y≥0 x\(\ne\)y
Cho x,y>0. chứng minh: \(\left|\frac{x+y }{2}-\sqrt{xy}\right|+\left|\frac{x+y}{2}+\sqrt{xy}\right|=\left|x\right|+ \left|y\right|\)
Hỏi đẳng thức còn đúng không nếu x,y<0.