Đề bài sai, ví dụ với \(x=y=\dfrac{1}{32}\)
Đề bài sai, ví dụ với \(x=y=\dfrac{1}{32}\)
Chứng minh bất đẳng thức: \(x\sqrt{y-1}+y\sqrt{x-1}\le xy\) với x,y \(\ge\) 1
\(x=\dfrac{\sqrt{1+\sqrt{1-a^2a}}\left[\left(1+a\right)\sqrt{1+a}-\left(1-a\right)\sqrt{1-a}\right]}{a\left(2+\sqrt{1-a^2}\right)}\) với \(-1\le a\le1;a\ne0\)
Hãy tính giá trị của biểu thức \(A=x^4-x^2+8\)
B1 Cho biểu thức A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{\sqrt{x}+7}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
1, Rút gọn A. Tìm x sao cho A<2
2, Cho 1≤a,b,c≤2. Chứng minh rằng \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
Tìm các số hữu tỉ x, y thoả mãn đẳng thức: \(x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=\sqrt{2019^3}+\sqrt{2018^3}\)
* Giải phương trình
a. \(\sqrt{45x}-2\sqrt{20x}+2\sqrt{80x}=21\)
b. \(\sqrt{x^2-10x+25}=4\)
* Chứng minh đẳng thức
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
rút gọn :
a, \(\sqrt{x+4\sqrt{ }X-4}+\sqrt{x-4\sqrt{ }x-4}vớix>=8\)
b,\(\sqrt{2x-1+2\sqrt{ }x^2-x}+\sqrt{2x-1-2}\sqrt{x^2}-x\)
c, \(\dfrac{\sqrt{x-2\sqrt{x+1}}}{x+2\sqrt{ }x+1}\left(x>=0\right)\)
d, \(\dfrac{x-1}{\sqrt{ }y-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y+1}\right)^2}{\left(x-1\right)^4}}\)
Cho biểu thức \(P=x^3+y^3-3\left(x+y\right)+2021\). Tính giá trị biểu thức P với :
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
và \(y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
Rút gọn biểu thức sau: A=\(\frac{x-1}{\sqrt{y+1}}\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\) với (\(x\ne1;y\ne1;y\ge0\))
Cho x,y>0. chứng minh: \(\left|\frac{x+y }{2}-\sqrt{xy}\right|+\left|\frac{x+y}{2}+\sqrt{xy}\right|=\left|x\right|+ \left|y\right|\)
Hỏi đẳng thức còn đúng không nếu x,y<0.