cho M=\(\frac{2\sqrt{y}}{x-y}+\frac{1}{\sqrt{x}-\sqrt{y}}+\frac{1}{\sqrt{x}+\sqrt{y}}\)với \(x\ge0,y\ge0,x\ne y\)
1.Rút gọn biểu thức M
2.Tìm x= 4y và M= 1
Cho biểu thức: \(P=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn P
b) Chứng minh P \(\ge\) 0
Cho biểu thức: \(P=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
Rút gọn P. Cho \(x.y=16\). Xác định x, y để P có giá trị nhỏ nhất
Cho biểu thức: \(B=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn B
b) Chứng minh: \(B\ge0\)
c) So sánh B với \(\sqrt{B}\)
Cho biểu thức S=\(\left(\dfrac{\sqrt{y}}{x+\sqrt{xy}}+\dfrac{\sqrt{y}}{x-\sqrt{xy}}\right):\dfrac{2\sqrt{xy}}{x-y}\) (Với x>0,x\(\ne\)y)
a.Rút gọn S
b. Tìm x,y để S=1
Cho biểu thức :
\(P=\frac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)
a) Tìm ĐKXĐ của x và y để P xác định . Rút gọn P
b) Tìm x , y nguyên thỏa mãn phương trình P = 2
Cho biểu thức Y=\(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
a. Rút gọn biểu thức Y. Tìm giá trị nhỏ nhất của Y
b. cho x>1. Chứng minh rằng Y-|Y|=0
Cho biểu thức: \(A=\frac{\sqrt{x^3}}{\sqrt{xy}-2y}+\frac{2x}{2\sqrt{xy}+2\sqrt{y}-x-\sqrt{x}}.\frac{1-x}{1-\sqrt{x}}\)
a) Rút gọn A
b) Tìm các số nguyên dương x để y =625 và A <0,2
Cho biểu thức: A= \(\frac{\left(\sqrt{x}-\sqrt{y}\right)+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)và B= \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)
a, rút gọn A và B
b, tính giá trị của tích A.B với x=2y và y=\(\sqrt{3}\)