\(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}\)
\(=\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3b^2}{4}\ge0\)
Dấu "=" xảy ra khi và chỉ khi a = b = 0
\(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}\)
\(=\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3b^2}{4}\ge0\)
Dấu "=" xảy ra khi và chỉ khi a = b = 0
Chứng minh bất đẳng thức: a2 + b2 + c2 \(\ge\) ab + bc +ac
Cho a,b,c là các số thực dương . Chứng minh bất đẳng thức.
(a+b)/(bc+a^2) +(b+c)/(ac+b^2) + (c+a)/(ab+c^2) <= 1/a +1/b +1/c
Chứng minh đẳng thức, bất đẳng thức: \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
Dùng bất đẳng thức Schwarz chứng minh bất đẳng thức sau:
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
Chứng minh: Bất đẳng thức: \(a^3+b^3+3abc\ge ab.\left(a+b+c\right)\) với a, b, c>0
Chứng minh đẳng thức, bất đẳng thức: \(9x^2-6x+2>0\) với mọi x
chứng minh các bất đẳng thức a^2+b^2+c^2+d^2+4 >=2.(a+b+c+d)
Chứng minh bất đẳng thức :
\(a^2+b^2\ge\frac{1}{2}\) Với a+b=1
Chứng minh đẳng thức, bất đẳng thức: \(2x^2+2x+1>0\) với mọi x