a) Đặt: \(b+c=x;c+a=y;a+b=z\)
Có: \(x+y-z=b+c+c+a-a-b=2c\)
=> \(c=\frac{x+y-z}{2}\)
Tương tự ta cũng có:
\(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2}\)
Có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
=\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)
\(=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)-3\right]\) (1)
Áp dụng bđt cô si ta có:
\(\frac{y}{x}+\frac{x}{y}\ge2;\frac{z}{x}+\frac{x}{z}\ge2;\frac{z}{y}+\frac{y}{z}\ge2\)
=> \(\left(1\right)\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)
Vậy \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
b) Có: \(\frac{a^2}{b+c}+\frac{b+c}{4}=\frac{\left(2a\right)^2+\left(b+c\right)^2}{4\left(b+c\right)}\) (1)
VÌ: \(\left[2a-\left(b+c\right)\right]^2\ge0\)
=> \(\left(2a\right)^2+\left(b+c\right)^2\ge4a\left(b+c\right)\)
=> \(\left(1\right)\ge\frac{4a\left(b+c\right)}{4\left(b+c\right)}=a\)
Hay: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge a\Rightarrow\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\) (2)
Tương tự ta cũng có: \(\frac{b^2}{c+a}\ge b-\frac{c+a}{4}\) (3)
\(\frac{c^2}{a+b}\ge c-\frac{a+b}{4}\) (4)
Cộng vế với vế (2);(3);(4) ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge a+b+c-\left(\frac{b+c+c+a+a+b}{4}\right)=\left(a+b+c\right)-\frac{a+b+c}{2}=\frac{a+b+c}{2}\)
xin phép làm lại :3
a) \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(=\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(\ge\frac{1}{2}\cdot3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot\frac{3}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}-3=\frac{3}{2}\)( đpcm )
Dấu "=" xảy ra <=> a=b=c
b) Áp dụng bất đẳng thức Bunyakovsky dạng phân thức ta có :
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
=> đpcm
Dấu "=" xảy ra <=> a=b=c