a) +) ab = 0, bđt đã cho luôn đúng
+) ab \(\ne0\), bđt đã cho tương đương:
a6 + b2a4 + b6 + a2b4 \(\ge a^6+b^6+2a^3b^3\)
\(\Leftrightarrow b^2a^4+a^2b^4\ge2a^3b^3\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\), luôn đúng
Dấu "=" xảy ra khi a = b
b) tương tự
Đúng 0
Bình luận (0)
a) (a2 + b2)(a4+b4) \(\ge\) (a3+b3)2
(=) a6 + a2b4+ b6 + b2a4\(\ge a^6+2a^3b^3+b^6\)
(=) \(a^6-a^6+b^6-b^6+a^2b^4+a^4b^2-2a^3b^3\ge0\)
(=)\(a^2b^4\left(a^2-2ab+b^2\right)\ge0\)
(=) \(a^2b^4\left(a-b\right)^2\ge0\)luôn luôn đúng
Đúng 0
Bình luận (0)