hình như đề bài sai rồi bạn
do mk biến đổi vé phải thành 4x^4+1 nên k thể thành 4(x^4+1):4 đk
\(VT=n^4+1;VP=\left(2n^2+2n+1\right)\left(2n^2-2n+1\right)=\left(2n^2+1\right)-\left(2n\right)^2=4n^2+1\)
sai đề
hình như đề bài sai rồi bạn
do mk biến đổi vé phải thành 4x^4+1 nên k thể thành 4(x^4+1):4 đk
\(VT=n^4+1;VP=\left(2n^2+2n+1\right)\left(2n^2-2n+1\right)=\left(2n^2+1\right)-\left(2n\right)^2=4n^2+1\)
sai đề
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Chứng minh rằng: \(\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\dfrac{1}{\left(a+b+c\right)^{2n+1}}\)
a) Tìm a, b : \(14a+6b=84+ab\)
b) Rút gọn \(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2n-1}{4+\left(2n-1\right)^4}\)
Tìm n thuộc Z sao cho:
a)n^2+2n-4 chia hết cho 11
b)2n^3+n^2+7n+1 chia hết cho 2n-1
c)n^3+2n^2-3n chia hết cho n^2-n
CM:
a) (2n+3)2-9 chia hết cho 4 với n thuộc Z
b) n2(n+1)+2n(n+1) chia hết cho 6 với n thuộc Z.
c) n(2n-3)-2n(n+1) chia hết cho 5 với n thuộc Z.
Tìm n ∈ Z để 2n2 + 5n + 4 chia hết cho 2n + 1
Chứng minh rằng
a, \(\left(2n-3\right).n-2n.\left(n+2\right)⋮7\forall n\in Z\)
b, \(n.\left(2n-3\right)-2n.\left(n+1\right)⋮5\forall n\in Z\)
Rút gọn
a, (3x-5) . (2x+11) - (2x+3) . (3x+7)
b, (x+2) . (2x2-3x+4) - (x2-1) . (2x+1)
c, 3x2 .(x2+2) + 4x. (x2-1) - (x2+2x+3) . (3x2-2x+1)
Với mọi số nguyên n, biểu thức nào dưới đây chia hết cho 5.
A. M = 2n (2n - 5) + (2n + 1)(1 - 2n). B. N = n (2n - 3) - 2n (n + 1).
C. P = (n - 1)(3 - 2n) + 2n (n + 5). D. Q = (n - 1)(n + 3) - (n - 3)(n + 1).
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11
1/ Cho \(n\) lẻ và \((n,3)=1\). chứng minh \(n^4-1 \ \vdots \ 48\)
2/ Cho n lẻ và (n,5)=1. chứng minh \( n^4-1 \ \vdots \ 80\)
3/ cmr: \(n^6+n^4-2n^2\) chia hết cho 72
4/ cm : \(n^8-n^4\) chia hết cho 240