để 2n3+n2 +7n+1 chia hết cho 2n-1 thì 2 \(⋮2n-1\)
=>2n-1 \(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
ta có bảng sau
2n-1 | -1 | 1 | -2 | 2 |
n | 0 | 1 | \(\dfrac{-1}{2}\) | 1,5 |
tm | tm | loại | loại |
vậy n \(\in\left\{0;1\right\}\)
để 2n3+n2 +7n+1 chia hết cho 2n-1 thì 2 \(⋮2n-1\)
=>2n-1 \(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
ta có bảng sau
2n-1 | -1 | 1 | -2 | 2 |
n | 0 | 1 | \(\dfrac{-1}{2}\) | 1,5 |
tm | tm | loại | loại |
vậy n \(\in\left\{0;1\right\}\)
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11
CM:
a) (2n+3)2-9 chia hết cho 4 với n thuộc Z
b) n2(n+1)+2n(n+1) chia hết cho 6 với n thuộc Z.
c) n(2n-3)-2n(n+1) chia hết cho 5 với n thuộc Z.
CMR
(2n-3) (3n-2) - (3m-2) (2n-3) chia hết cho 5 với m,n thuộc Z
1.Chứng minh rằng;
a)356-355 chia hết cho 34
b)434+435 chia hết cho 44
c)n(2n-3)-2n(n+2) chia hết cho 7,\(\forall\)n \(\in\)Z
Chứng tỏ rằng :
a ) Biểu thức n( 2n - 3 ) - 2n ( n + 1 )luôn chia hết cho 5 với mọi số nguyên n
b ) Biểu thức a2 ( a + 1 ) + 2a ( a + 1 ) chia hết cho 6 với a \(\in\) Z
Chứng minh rằng với mọi giá tyrij nguyên n , ta có
a)\(n^3+3n^2+2n\) chia hết cho 6
b)\(\left(n^2+n-1\right)^2-1\) chia hết cho 24
Với mọi số nguyên n, biểu thức nào dưới đây chia hết cho 5.
A. M = 2n (2n - 5) + (2n + 1)(1 - 2n). B. N = n (2n - 3) - 2n (n + 1).
C. P = (n - 1)(3 - 2n) + 2n (n + 5). D. Q = (n - 1)(n + 3) - (n - 3)(n + 1).
1. Tìm x, biết:
a) 4x3 - 36x = 0
b) ( 3x - 5 )2 - ( x + 1 )2 = 0
c) ( 5x - 4 )2 - 49x2 = 0
2) chứng minh rằng: với mọi n thuộc Z
A= ( 5n - 2 )2 - ( 2n - 5 )2 chia hết cho 21
B = ( 7n - 2 )2 - ( 2n - 7 )2 chia hết cho 7
3) chứng minh rằng:
a) Hiệu các bình phương của 2 số lẻ liên tiếp luôn chia hết cho 8
b) Hiệu các bình phương của 2 số chẵn liên tiếp luôn chia hết cho 4
CÁC BẠN GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP!!!
Tìm n thuộc Z để \(2n^2+5n-1\) chia hết cho 2n - 1