Bài 1: Số phức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhân Hoàng Ngọc

Cho |z| = m2 + 2m + 5 với m là tham số thực. Biết rằng tập hợp các điểm biểu diễn các số phức w = (3-4i)z - 2i là một đường tròn. Tính bán kính nhỏ nhất của đường tròn đó

Akai Haruma
25 tháng 3 2018 lúc 0:24

Lời giải:

Đặt \(z=a+bi\)

Từ \(|z|=m^2+2m+5\Leftrightarrow \sqrt{a^2+b^2}=m^2+2m+5\)

\(\Leftrightarrow a^2+b^2=(m^2+2m+5)^2\)

\(w=(3-4i)z-2i=(3-4i)(a+bi)-2i\)

Thực hiện khai triển: \(w=(3a+4b)+i(3b-4a-2)\)

Bán kính đường tròn chứa tập hợp biểu diễn số phức $w$ là:

\(R=\sqrt{(3a+4b)^2+(3b-4a-2)^2}\)

\(=\sqrt{25(a^2+b^2)+16a-12b+4}\)

Ta có:

\(25(a^2+b^2)+16a-12b+4=\frac{45}{2}(a^2+b^2)+(a\sqrt{\frac{5}{2}}+\frac{8\sqrt{10}}{5})^2+(b\sqrt{\frac{5}{2}}-\frac{6\sqrt{10}}{5})^2-36\)

\(\geq \frac{45}{2}(a^2+b^2)-36\)

\(\Rightarrow R\geq \sqrt{\frac{45}{2}(m^2+2m+5)^2-36}=\sqrt{\frac{45}{2}[(m+1)^2+4]^2-36}\)

\(\geq \sqrt{\frac{45}{2}.4^2-36}=\sqrt{324}\)

Vậy \(R_{\min}=\sqrt{324}=18\)


Các câu hỏi tương tự
Kiên Đỗ
Xem chi tiết
Pé Pun Pin
Xem chi tiết
Kiên Đỗ
Xem chi tiết
Kiên Đỗ
Xem chi tiết
Phan Nhật Đông
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Truongduy
Xem chi tiết
Tuấn Đỗ
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết