Ta có:
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow x^2+y^2\ge2xy\)
Tương tự có:
\(x^2+z^2\ge2xz\)
\(y^2+z^2\ge2yz\)
Do đó :
\(x^2+y^2+x^2+x^2+y^2+z^2\ge2xy+2xz+2yz\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)+x^2+y^2+z^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow x^2+y^2+z^2\ge\dfrac{10^2}{3}\) (thay x+y+z=10)
\(\Rightarrow x^2+y^2+z^2\ge\dfrac{100}{3}\)
\(\rightarrowđpcm\)