giải pt:
\(\sqrt{x-2}+\sqrt{y-3}+\sqrt{z-5}=\dfrac{1}{2}\left(x+y+z-7\right)\)
1, Tìm a, b, c, d biết:
\(\left\{{}\begin{matrix}a+2b-c+d=7\\a-3b+c-d=10\\2a-3b+c-5d=13\\a+b+c+d=12\end{matrix}\right.\)
2, Cho A = 3x2 5yx2 + 3z. Tính A, biết:
a, x = 1, y = 3, z = 4
b, x = 2, y = 5, y = 10
c, x = 7, y = -1, z = -2
Ps: Ace Legona help me -.- !!!
cho xyz khác 0 thỏa mãn x^3+y^3+z^3=x^5+y^5+z^5.tính S=x^2+y^2+z^2
a) Cho x, y, z thuộc R. Cmr: \(\left(x+y+z\right)^2>=3.\left(xy+yz+zx\right)\)
b) Cho 3 số dương x, y, z thỏa mãn x + y +z = 1. Tìm giá trị nhỏ nhất của biểu thức:
M = \(\frac{5}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\)
tìm max:
a, \(A=3\sqrt{2x-1}+x\sqrt{5-4x^2}\) với 1/2<=x<= căn 5/2
b, \(B=\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)};x,y,z>0\)
1) Cho x,y,z > -1 thỏa mãn:
\(x^3+y^3+z^3\)≥ \(x^2+y^2+z^2\)
CMR: \(x^5+y^5+z^5\)≥ \(x^2+y^2+z^2\)
2. Cho a,b,c ϵ {0;1;2} và a+b+c=3
CMR: \(a^2+b^2+c^2\) ≤ 5
3. Cho \(a_1,a_2,..,a_9\in\left[-1;1\right]\) sao cho \(a^3_1+a^3_2+...+a^3_9=0\)
CMR: \(a^3_1+a^3_2+...+a^3_9\le3\)
4. Cho \(ab\ge1\). CMR: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{1+ab}\)
5. Cho a,b,c >0. CMR:
\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\le3\cdot\frac{a^2+b^2+c^2}{a+b+c}\)
1) cho x,y>0 và \(x^4+y^4=2\) CMR: \(\dfrac{x^2}{y}+\dfrac{y^2}{x}\ge2\)
2) cho x,y,z > 0 và \(x^2+y^2+z^2=3\) CMR: \(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge3\)
Bài 4: Cho a, b, c là độ dài ba cạnh của một tam giác, p là nửa chu vi . CMR:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\) \(\ge\) \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 5: Cho x, y, z dương. CMR:
\(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}>2\)
Bài 6: Cho x, y, z dương thỏa mãn: xy + yz + zx = 1
CMR: \(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}\le2\left(x+y+z\right)\)
Cho x, y,z là các số thực dương. CMR x^3/y^2+y^3/z^2+z^3/x^2>=x^2/y+y^2/z+z^2/x