Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hello sunshine

Bài 4: Cho a, b, c là độ dài ba cạnh của một tam giác, p là nửa chu vi . CMR:

\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\) \(\ge\) \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Bài 5: Cho x, y, z dương. CMR:

\(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}>2\)

Bài 6: Cho x, y, z dương thỏa mãn: xy + yz + zx = 1

CMR: \(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}\le2\left(x+y+z\right)\)

Nguyễn Hữu Tuấn Anh
11 tháng 8 2020 lúc 9:48

Bài 4:

Ta có:Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên a+b-c>0,a+c-b>0,b+c-a>0.Do đó,áp dụng bất thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x,y là các số dương

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{\left(a+b-c\right)+\left(a+c-b\right)}=\frac{4}{2a}=\frac{2}{a}\\\frac{1}{a+b-c+}+\frac{1}{b+c-a}\ge\frac{4}{\left(a+b-c\right)+\left(b+c-a\right)}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{\left(b+c-a\right)+\left(a+c-b\right)}=\frac{4}{2c}=\frac{2}{c}\end{matrix}\right.\)

\(\Rightarrow2\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\left\{{}\begin{matrix}b+c-a=\left(a+b+c\right)-2a=2p-2a=2\left(p-a\right)\\a+c-b=\left(a+b+c\right)-2b=2p-2b=2\left(p-b\right)\\a+b-c=\left(a+b+c\right)-2c=2p-2c=2\left(p-c\right)\end{matrix}\right.\)

\(\Rightarrow2\left[\left(\frac{1}{2\left(p-a\right)}+\frac{1}{2\left(p-b\right)}+\frac{1}{2\left(p-c\right)}\right)\right]\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi a=b=c

Nguyễn Hữu Tuấn Anh
11 tháng 8 2020 lúc 10:21

Bài 6(mk dựa vào ý tưởng của bạn TRẦN MINH HOÀNG nha)

Ta có:\(\sqrt{x^2+1}=\sqrt{x^2+xy+yz+xz}=\sqrt{x\left(x+y\right)+z\left(x+y\right)}=\sqrt{\left(x+z\right)\left(x+y\right)}\le\frac{\left(x+z\right)+\left(x+y\right)}{2}\)

Chứng minh tương tự:\(\sqrt{y^2+1}\le\frac{\left(x+y\right)+\left(y+z\right)}{2}\)

\(\sqrt{z^2+1}\le\frac{\left(x+z\right)+\left(y+z\right)}{2}\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\le\frac{\left(x+y\right)+\left(x+z\right)}{2}+\frac{\left(x+y\right)+\left(y+z\right)}{2}+\frac{\left(x+z\right)+\left(y+z\right)}{2}=2\left(x+y+z\right)\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi x=y=z

Nguyễn Việt Lâm
11 tháng 8 2020 lúc 10:24

5.

\(\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\ge\frac{2x}{x+y+z}\)

Tương tự: \(\sqrt{\frac{y}{x+z}}\ge\frac{2y}{x+y+z}\) ; \(\sqrt{\frac{z}{x+y}}\ge\frac{2z}{x+y+z}\)

Cộng vế với vế:

\(VT\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Dấu "=" ko xảy ra nên \(VT>2\)

Trần Minh Hoàng
11 tháng 8 2020 lúc 10:12

Bài 6:

\(\sum\sqrt{1+x^2}=\sum\sqrt{x^2+xy+yz+zx}=\sum\sqrt{\left(x+y\right)\left(x+z\right)}\le\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=2\left(x+y+z\right)\)


Các câu hỏi tương tự
Ánh Dương
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Ánh Dương
Xem chi tiết
nho quả
Xem chi tiết
Đặng Thị Thanh Thảo
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
VƯƠN CAO VIỆT NAM
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Trần Bảo Hân
Xem chi tiết