Bài 4: Cho a, b, c là độ dài ba cạnh của một tam giác, p là nửa chu vi . CMR:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\) \(\ge\) \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 5: Cho x, y, z dương. CMR:
\(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}>2\)
Bài 6: Cho x, y, z dương thỏa mãn: xy + yz + zx = 1
CMR: \(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}\le2\left(x+y+z\right)\)
Bài 4:
Ta có:Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên a+b-c>0,a+c-b>0,b+c-a>0.Do đó,áp dụng bất thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x,y là các số dương
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{\left(a+b-c\right)+\left(a+c-b\right)}=\frac{4}{2a}=\frac{2}{a}\\\frac{1}{a+b-c+}+\frac{1}{b+c-a}\ge\frac{4}{\left(a+b-c\right)+\left(b+c-a\right)}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{\left(b+c-a\right)+\left(a+c-b\right)}=\frac{4}{2c}=\frac{2}{c}\end{matrix}\right.\)
\(\Rightarrow2\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Mà \(\left\{{}\begin{matrix}b+c-a=\left(a+b+c\right)-2a=2p-2a=2\left(p-a\right)\\a+c-b=\left(a+b+c\right)-2b=2p-2b=2\left(p-b\right)\\a+b-c=\left(a+b+c\right)-2c=2p-2c=2\left(p-c\right)\end{matrix}\right.\)
\(\Rightarrow2\left[\left(\frac{1}{2\left(p-a\right)}+\frac{1}{2\left(p-b\right)}+\frac{1}{2\left(p-c\right)}\right)\right]\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi a=b=c
Bài 6(mk dựa vào ý tưởng của bạn TRẦN MINH HOÀNG nha)
Ta có:\(\sqrt{x^2+1}=\sqrt{x^2+xy+yz+xz}=\sqrt{x\left(x+y\right)+z\left(x+y\right)}=\sqrt{\left(x+z\right)\left(x+y\right)}\le\frac{\left(x+z\right)+\left(x+y\right)}{2}\)
Chứng minh tương tự:\(\sqrt{y^2+1}\le\frac{\left(x+y\right)+\left(y+z\right)}{2}\)
\(\sqrt{z^2+1}\le\frac{\left(x+z\right)+\left(y+z\right)}{2}\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\le\frac{\left(x+y\right)+\left(x+z\right)}{2}+\frac{\left(x+y\right)+\left(y+z\right)}{2}+\frac{\left(x+z\right)+\left(y+z\right)}{2}=2\left(x+y+z\right)\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi x=y=z
5.
\(\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\ge\frac{2x}{x+y+z}\)
Tương tự: \(\sqrt{\frac{y}{x+z}}\ge\frac{2y}{x+y+z}\) ; \(\sqrt{\frac{z}{x+y}}\ge\frac{2z}{x+y+z}\)
Cộng vế với vế:
\(VT\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Dấu "=" ko xảy ra nên \(VT>2\)
Bài 6:
\(\sum\sqrt{1+x^2}=\sum\sqrt{x^2+xy+yz+zx}=\sum\sqrt{\left(x+y\right)\left(x+z\right)}\le\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=2\left(x+y+z\right)\)