Trước hết\(,\,\)theo một hệ quả quen thuộc của AM-GM:
\(4=\left(x^2+y^2+z^2\right)^2=\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)\)
\(\therefore xyz(x+y+z) \leq \frac{4}{3}\)
Vì vậy: \(A\ge\frac{18}{2\left(x^2+y^2+z^2\right)}+\frac{\left(x^2+y^2+z^2\right)^2}{2xyz\left(x+y+z\right)}\ge\frac{9}{2}+\frac{4}{\frac{8}{3}}=6\)
Đẳng thức xảy ra khi \(x=y=z=\sqrt{\frac{2}{3}}\)