Cho x>y>z .CMR:
A=x4(y-z)+y4(z-x)+z4(x-y) luôn dương
Cho x,y,z là các số thực dương thỏa mãn:x+y+z=1.CMR:\(8^x+8^y+8^z\)≥\(4^{x+1}+4^{y+1}+4^{z+1}\)
Cho các số x,y,z ko âm thoả mãn x+y+z=1.CMR
x+2y+z\(\ge\)4(1-x)(1-y)(1-z)
Đây là một số bất đẳng thức trích từ một số đề thi vào chuyên,rất mong nhận được lời giải từ mọi người :
Bài 1:Cho x,y,z >0 thỏa mãn x+y+z=1
Tìm Max Q= \(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
Bài 2:Cho x,y,z>0 thỏa mãn :x+y+z=1
Chứng minh:\(\dfrac{1-x^2}{x+yz}+\dfrac{1-y^2}{y+zx}+\dfrac{1-z^2}{z+xy}\ge6\)
Bài 3:Cho x,y,z>8
Tìm Min P=\(\dfrac{x}{\sqrt{y+z}-4}+\dfrac{y}{\sqrt{z+x}-4}+\dfrac{z}{\sqrt{x+y}-4}\)
Bài 4: Cho a,b,c>0 thỏa mãn (a+b)(b+c)(c+a)=1
CMR: ab+bc+ca\(\le\dfrac{3}{4}\)
cho x,y,z > 0 . Tìm GTNN x^4+y^4 + z^4 với x+y+z=2
Bài 1: CMR:
P= x.(x - y).(x + y). ( x + 2y) + y là bình phương của một đa thức.
Bài 2: Cho x + y + z = 0. CMR: (x2 + y2 + z2) = 2. x4 + y4 + z4
* Trả lời giúp mình vs. Mình đang cần gấp <3
1. Cho 3 số dương x, y, z thỏa mãn x+y+z=1. TÌM GTNN của biểu thức: A=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
2. Cho a, b,c>0 và a+b+c=3. Tìm GTNN của biểu thức S=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
3. CHo x,y,z là 3 số thực dương thỏa mãn đk: x+y+z≤ 6.
CM: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) ≥ \(\frac{3}{2}\).
4. Cho 4 số dương a, b,c, d . CMR \(a^4+b^4+c^4+d^4\) ≥ 4abcd.
Chứng minh từ: \(4\left(y-x\right)\left(z-x\right)+4\left(z-y\right)\left(x-y\right)+4\left(x-z\right)\left(y-z\right)=0\) suy ra x = y =z
Cho x, y, z là 3 số dương thỏa mãn x+y+z-4=0. Chứng minh rằng:
(x+y)(y+z)(z+x)>=x^3×y^3×z^3.