Ta có: \(\left\{{}\begin{matrix}\dfrac{x-y}{x+y}=\dfrac{x+y-2y}{x+y}=1-\dfrac{2y}{x+y}\\\dfrac{x^2-y^2}{x^2+y^2}=\dfrac{x^2+y^2-2y^2}{x^2+y^2}=1-\dfrac{2y^2}{x^2+y^2}\end{matrix}\right.\)
bđt cần chứng minh tương đương với:
\(\dfrac{2y}{x+y}>\dfrac{2y^2}{x^2+y^2}\Leftrightarrow\dfrac{2y\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2+y^2\right)}>\dfrac{2y^2\left(x+y\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)
\(\Rightarrow2x^2y+2y^3>2y^2x+2y^3\)
\(\Rightarrow2x^2y>2y^2\Leftrightarrow x>y\) (đúng)
\(\Rightarrow\) bất đẳng thức cần cm đúng. (đpcm)